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Abstract-The present paper considers an elastic rectangle indented on a set of parallel edges by flat punches
with finite coefficient of sliding friction. The contact area is divided into an inner adhesive region in which the
surface displacements are known, surrounded by regions in which the friction is limiting and the displacement
parallel to the interface is not known. The remaining extreme portions of the edges as well as the other set of
parallel edges are free from tractions. The problem is formulated in terms of a set of three singular integral
equations which are nonhomogenious. Solutions of the integral equations which satisfy the finiteness of
stresses at the point which separates the adhesive from the slip zone, determine the extent of adhesion. This
is found to be independent of the magnitude of the load, but depends on the values of the frictional
coefficient, Poisson's ratio and the geometrical parameters. Numerical results of the quantities of practical
interest are reported.

INTRODUCTION
The problem of indentation of an elastic body by rigid punches is of considerable interest both
from the point of view of application as well as analysis. A relatively large body of literature
exists for the limiting case when it is assumed that the contact between the punch and the elastic
body is smooth. This eliminates the existence of contact shearing stresses thereby reducing the
number of unknown variables. The other extreme case in which it is assumed that upon contact
complete adhesion takes place has been known to be analytically more complicated but with the
recent developments in the numerical treatment of singular integral equations, increasing number
of studies which deal with this case are appearing in literature. The linear elasticity solutions,
although physically realistic near the center of the punch when complete adhesion is assumed,
contradict the physical expectations near the edges with sharp angles. Thus, when a flat punch
indents an elastic half plane, it is known that the ratio of shear stress T to normal stress u near the
corner is given by [I]

where K is a material constant. This shows that the ratio is divergent and oscillatory implying that
either plastic flow or slip (frictional) or both will take place. This motivated Galin [2] to consider
finite friction between the surfaces and obtained approximate solution by treating the adhesive
region as an unknown quantity dependent on the Poisson's ratio and the frictional coefficient.

A rigorous treatment of the indentation of an elastic half-plane by a rigid punch with a finite
coefficient of friction between the surfaces has been recently given by Spence [3]. He derived a
singular integral equation in terms of a function representing certain combination of the shear and
the normal stress in the adhesive region. The kernel of the equation was positive and he proved
that the largest eigenvalue of the equation gives the extent of the adhesive boundary. Spence's
paper also gives a complete account of this problem along with various numerical results of
quantities of practical interest. The present paper which considers an elastic rectangle indented
by flat punches is, therefore, motivated by Spence's study.
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In this more general case, however, the presence of the traction free edges of the rectangle
complicates the structure of the governing integral equations. The conditions of the traction free
edges are satisfied by employing Papkovich-Fadle eigenfunctions [4] which lead to the solution of
certain mixed series on the remaining set of parallel edges. By introducing three unknown
functions, two of which represent shear stresses in the adhesive and slip zones and the third one
is associated with certain displacement gradient, a system of three singular integral equations is
derived. There appears no simple way to prove the existence of an eigenvalue of the type
supplied by Spence [3] in this case and, therefore, an indirect approach is employed to determine
the extent of adhesive boundary. In fact, the system of integral equations derived here are
nonhomogeneous so that the condition of finiteness of stresses at the point which separates the
adhesive from the slip zone is imposed to determine the eigenvalue parameter.

Three different approaches are utilized to solve numerically the three equations
corresponding to the three regions. The adhesive zone equation is converted by means of certain
suitable transformation into a Fredholm integral equation of the second kind. The slip zone
equation, which is a singular equation of the second kind, is solved by employing Jacobi
integration formula in which certain approximation is made for the term involving Cauchy kernel.
The free surface equation is given a numerical treatment based on certain extensions of the
method due to Gupta and Erdogan [5]. Numerical results of various quantities of practical interest
are given.

STATEMENT OF THE PROBLEM

For describing the rectangular domain, two reference axes will be used with cartesian
coordinates hx and hz. The bounding surfaces z = ± 1, are free from tractions. On the remaining
bounding planes x = ± a, the following conditions of displacements Ux and Uz and the stresses
(J'xx and (J'xz are satisfied

ux(a, z) = -(1- v)ll, o:5lz 1:5 b < 1 (1)

u,{-a, z) =(1- v)ll, O:5lzl < b < I (2)

uz(±a, z) = 0, o:5lz 1:5 c < b (3)

l(J'xz(±a, z)1 = ILI(J'xx(±a, z)j, c:5lzl:5 b (4)

(J'xx(±a, z) =0, b:5lzl:51 (5)

(J'xz(±a, z) = 0, b:5lzl:51. (6)

The units of length and stresses are chosen to be hand 2G, respectively. In the above, v is the
Poisson's ratio and IL is the coefficient of limiting friction. The conditions (1}-(6) refer to the
physical problem of the indentation of a rectangle of length 2h and height 2ah by a pair of rough
rigid punches of width 2bh each, total indentation being 2(1 - v)llh. The contact area consists of
outer slip zones, c "" Izi < I where (4) is satisfied, and an inner adhesive region, Izl "" c where in
addition to (3), the following inequality must be valid

(7)

The extent of adpesion, 2c, is an eigenvalue of the problem which is not known in advance, but
will have to be determined for given values of the physical constants IL, v, a and b.

In order that the conditions O}-(7) yield a physically unique solution, it is further assumed
that the load is monotonically applied sufficiently slowly for static equilibrium to hold at each
stage. The boundary conditions (1}-(6) lead to a system of three singular integral equations in
terms of functions representing shear stresses in the slip and adhesive zones and certain
displacement gradient in the free surface region. It is shown that the formulation yields the
correct behavior near the junctions and the equations are suitably transformed for numerical
treatment. The eigenvalue c is determined by imposing certain finiteness condition as explained
in the sequel. Finally, the inequality (7) is separately verified after an eigenvalue c is obtained
numerically.
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GOVERNING INTEGRAL EQUATIONS

As in [4], the solution of the Navier's equations for plane strain case is assumed in the
following form

Ux = -(1- v)Dx + L An sinh (AnX )An/l. (z)
n

Uz = vDz + L An cosh (AnX ){f;n (z) + 2(1 - V)/~n (z)}
n

(8)

where D is an unknown real constant and An (n =-00, •••-1, 1, ... (0) are a set of complex
constants. lIn and hn constitute a set of complex valued eigenfunctions even in z such that
traction free conditions of (Tzz(x, ±1) = (Txz(x, ±1) =0, are satisfied provided that sin 2An+ 2An =
O. For complete definition and discussion of the properties of these eigenfunctions, reference is
made to [6]. The present analysis will be based on these properties which, for the sake of brevity,
will not be repeated here.

We note that eqns (8) yield the following expressions for the stresses

(Tn = - D + L An cosh (AnX )A/{fln (z) - vh. (z)}
n

(Txz = LAn sinh(Anx)An{j;n(z)+(l- v)/~.(z)}
n

(Tn = - L An cosh (AnX)An2{fln(Z)+ (1- v)h.(z)}.
n

(9)

(10)

(11)

For the sake of convenience in satisfying the boundary conditions 0-6), we introduce the
following functions defined as

(+ ) -(1 ) {cP1(Z), oslzlsc
(Txz -a,z =+ -v 4>2(Z), c slzlsb

ux(±a, z) = :+(1- v) {f'1 cP3(t) dt +A}. b s Izl s 1.

Both cPl and cP2 are odd functions of z. By using (8), (13), (1) and (2) we may arrive at

(12)

(13)

L A.An sinh (Ana)/ln(z) = (1- v)(Da -A)-(1- v)H(z - b) r cP3(t)dt, Os z s 1 (14)• Jb

where H denotes the Heaviside function so that H(t) is zero when t <0, and is equal to one
when t >0.

Again, using (10), (12), (6) and (14) we obtain

(15)

From (14) and (15) by using the relation

the constant D is obtained as

(16)
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The orthonormality condition of the eigenfunctions given in [4] when suitably applied to (14) and
(15) yields

AnAn sinh Ana =2CO~Z An [f ~1(t)P(An, t)dt +r~z(t)P(An, t)dt - f ~3(I)Q(An, t)dt]

(17)
where

Q(A, t) = cot A sin At - t cos At

peA, I) = Q(A, 1)+2(1- v) Si~At,
(18)

Substitution of (17) in the series expressions for u. (a, z) and axx (u, z) yields after some
rearrangement

where

L I( ) ~ An coth Ana p )P( )
o I, z = £J 2 z , (An, 1 An, Z

n cos I\n

L Z( ) ~ An coth Ana Q( )Po I, Z =- £J 2 Z A An, 1 (An, Z)
n cos n

Lo3(1, z) = 2: Ai cot~ ;nU Q(An, t)Q(An, z),
n cos n

(19)

(20)

(21)

(22)

(23)

By contour integration of suitable functions in the right hand side of the complex plane, the
complex series in (21)-(23) may be expressed ast

00 sin m7T'1 sin m7T'Z
Lo1(t, z) = 2: [m7T'u cosechz m7T'Q - (3 - 4v) coth m7T'a]

m-I,Z m7T'

2m7T'

- i 7 s(m7T',t)s(m7T',z)-(1-vf~
m-I,Z , h 2m7T'+ 2m7T' Q a Qsm -- --

a a

00 sin m7T'1 sin m7T'Z Z
LoZ(t,z)=-m~,z m7T' [m7T'ucosech m7T'u-(1-2v)cothm7T'u]

2m7T'

+ i 7 R (!!!.E: t) S (m7T' z)
m-I.2 sinh 2m7T'+ 2m7T' a' a '

a a

~ sin m7T'1 sin m7T'Z 2Lo3(1, Z) = £J [coth m7T'a + m7T'Q cosech m7T'Q]
m-I.Z m7T'

(24)

(25)

(26)

tThe kind of analysis carried out here has been discussed in detail in [4,6], For the sake of convenience, however, the
Appendix gives some details of the contour integration pertaining to (21).
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R (A, t) == coth A sinh At - t cosh At

S(A, t) == R (A, t) +2(1- v) sin~ At.
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(27)

(28)

Finally, the boundary conditions (3}-(5) lead to the following system of singular integral
equations

d 1< d Jb-(1- JI )<(h(z) == ILV - IL dz 0 </>t(t )L0
2(z, t) dt - IL dz < <(h(t)

x L0
2(z, t) dt -IL d~ f </>J(t)L0

3(t, z) dt, c:5 z :5 b (30)

(31)

Later we shall reduce (29) to a Fredholm equation of the second kind. The eqns (30) and (31)
are basically singular equations of the second and first kind respectively. In the next section we
derive the type singularity of <P2 near z == b.

TYPE SINGULARITY NEAR z = b

In order to investigate the singularity of the functions <P2 and <P3' we wish to follow the
procedure as used by Keer in [7]. We assume <P2 and <P3 to be of the form

<P2(t) == (b - t)/3-l a2(t)

<P3(t) == (t - b)/3-l a3(t).
(32)

By making use of an identity given in [6, eqn 4.29], the eqns (31) and (32) can be written in a form
involving sum of singular parts and regular parts as given by

where

-<P2(Z) + m22 Jb <P2(t) dt +!!!E ( <P3(t) dt == F2(z), c:5 z:5 b
7T < t - Z 7T Jb t - Z

_(1-2v)J
b

<P2(t)dt __1 (<P3(t)dt==F3(z), b:5z:51
7T < t - Z 27T Jb t - Z

m -~
23 - 2(1- v)'

(33)

(34)

(35)

The functions F2 and F3 in (33}-(34) although contain <PI, <P2 and 4>3 but are associated with
Fredholm Kernels and, therefore, may be regarded continuous. By making use of (32) and the
substitutions U I == b - t and U2 == t - b in (33), we obtain as z ..... b-
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The singular parts of the integrals may be obtained by considering the upper limits to be infinity,
so that the integrals may be evaluated by their Mellin transforms. Thus, we have

(b - z)II-I[-a2(b) +a2(b)mn cot 1Tf3 +a3(b)m23 cosec 1Tf3] == Ft(z). (37)

The singular part in (37) has to vanish and thus

a2(b )[mn cot 1Tf3 -1] +a3(b )m23 cosec 1Tf3 == O.

Similarly, the eqn (34) yields

a2(b)(1 - 211) cosec 1Tf3 + a3(b) cot 1Tf3 == O.

(38)

(39)

For a nontrivial solution, determinant of the homogeneous system (38) and (39) must vanish and
this yields

1l(1-2v)
cot 1Tf3 + 2(1- v) == o. (40)

We observe that the characteristic equation for stress singularity near z == b given by (40) is
essentially the same as obtained by Spence in [3].

It is interesting to investigate the special case of a punch with complete adhesion, i.e. b == c.
For this purpose, (29) and (31) can be expressed as

(3-4v) (b cPl(t) dt _ (1-211)11

cP3(t) dt == FI(Z), O:s z:s b
11' Jo t - Z 11' b t - Z

(1-211) (b cPl(t) dt +1.11

cP3(t) dt == F3(z), b:s z:s l.
11' Jo t-z 11' b t-z

If we now assume

cPl(t) == ial(t)(b - t)1I-1

cP3(t) == ia3(t)(t - b)11- 1

(41)

(42)

(43)

then proceeding as before, singular parts of (41) and (42) may be extracted from which we obtain
the following system of equations.

al(b )(3 - 411) cot 1Tf3 - a3(b )(1- 211) cosec 1Tf3 == 0

al(b )(1- 2v) cosec 1Tf3 + a3(b) cot 1Tf3 == O.

Equations (44) and (45) lead to

2 (1-211)2 _
cot 1Tf3 + 2_ 211 - O.

Making use of (46) in (43), it is possible to show after some manipulation

A.. ( )== al(z) log(3-411)1 (_1_)
'f'1 z V(b - z) 27T og b - z .

(44)

(45)

(46)

(47)

Thus, eqn (47) implies a singularity which is oscillatory in nature and is the same as that given by
Muskhelishvili [8] for an elastic half-space indented by a flat punch with fully adhesive contact.

REDUCTION OF EQN (29) TO FREDHOLM INTEGRAL EQUATION OF THE SECOND KIND

We, thus, note that a solution of the problem necessitates a study of the system of singular
eqns (29)-(31) such that the inequality (7) is fulfilled. Further the stresses are singular near
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z = b where the exponent of singularity is governed by (40), but are continuous in 0 :5lzI< b. The
function q,3 must also be bounded in b < Iz I:5 1. It appears that there is no simple way to handle
this situation and, therefore, an indirect approach is utilized which has proved effective ina
related problem [9]. The method is based upon the introduction of an artificial singularity in the
shear stress at z = ±c and, then, requiring that the strength of this singularity be zero. This
scheme also converts eqn (29) which is of first kind into a second kind equation. For this
purpose we substitute

(48)

By use of (48) and after an integration by parts the eqn (29) can be obtained as

1
c

d 1c

8(y)dy 1b t- 0dt Lot(t, z) , y(y2_ t 2) dt + c q,z(t)L01(t, z) dt - Jb q,3(t)L02(t, z) dt = -IIDz,

0:5 z :5 c. (48a)

The expression containing 8 in the above equation, by a change in the order of integration and
some algebraic manipulation, may be shown to be equal to

-¥ (3 - 411)r8(y) m~.2 sin m7TzJo(m7TY) dy +¥r8(y)N(y, z) dy

where

~

N(y, z) = L [m7Ta cosech2 m7Ta - (3 - 411) (coth m7Ta -1)] sin m7TzJo(m7TY)
m=1.2

2m7T

~ (iT S (m7T ) h (m7T ) (1-11)2- LJ - Z 2 - Y ---z
m~I,2 • h2m7T+2m7T a' a ' asm -- --

a a

where

h2(A, t) = (A coth A + 1- 211 )Io(At) - AtIt(At).

We note that the kernel N(y, z) is bounded. Further, making use of the identity[lO]

i sin m7TzJo(m7TY) = ~(~ - y~) 1~ exp (-7TS) cosech (7TS) sinh (sz)Io(sy) ds
m~I.2 Z - Y 0

the eqn (48a) can be expressed in the form of an Abel type equation

r 8(y) dy g(z), 0< z < cJo Y(Z2 _ y2)

whose solution is of the form

_ 2 d 1Z

ug(u)
8(z)---d ./( 2 2)du7T z 0 v z -u

2 [ 1Z

g'(u) ]=; g(O)+z 0 y(z2_ u2)du, o<z<c.

(49)

Carrying out the algebra explicitly, the solution of the Abel type equation which is Fredholm
second kind is obtained as
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'l'1(Z) + Zf 'l'1(t)K(t, z) dt + 3~~v f 'l'2(t)MO(t, z) dt - 3~~v

f 'l'3(t)MI(t,Z)dt=-3~:v' O$Z$C, (50)

(51)

K(t, z) = - Loo

s exp (-s) cosech s1o(sy)1o(sz) ds - 3::v m~.2 m[m1Ta cosech2 m1Ta -(3 -4v)

x (coth m1Ta - I)]Jo(m1Tt)Jo(m1TZ) + 3 _1T4v m~.2

2m1T

7 h2(m1T, t) h2(m1T, z) +_17'_ (1- V)2 (52)
. h2m1T+2m1T a a 3-4v a

SID - -
a a

MO(t'Z)=_3-v[~~;=z~) 100

exp(-s)COSeChS10(SZ)Sinhstds]+ i sinm1TtJo(m1TZ)
17' Z 0 m~I.2

X [m1Ta cosech2 m1Ta - (3 - 4v) (coth m1Ta - 1)]

(53)

00

M1(t, z) = 2: sin m1TtJo(m1Tz)[m1Ta cosech2 m1Ta -(1-2v)(coth m1Ta -1)]
m=1.2

2m1T

- i 7 R(m1T,t)h2(m1T,z)-(1-2v) i [H(;-Z~
m~I.2 • h 2m1T+ 2m1T a a m~I.2 y(t - Z )

SID --
a a

-rexp (-s) cosech s10(sz) sinh (st) dS]. (54)

By use of substitutions (48) and (50), the eqns (30}-(31) are transformed after some manipulation
into

1£(1-2v)J"'I'2(t) 1c J"-'I'2(z)+21T(1-V) c t_z dt + 0 'l'M)K1(t,z)dt+ c'I'lt)K2(t,z)dt

+11

'l'3(t)K3(t, z) dt = -11£, C$ Z $ b (55)
" - v

where

b <z =:; J (56)
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x cos m7TZ{m7Ta cosech2m7Ta - (1- 2,,) (coth m7Ta - I)}

2m7T

-2: mt'2sinh~+~hl(:7T,t)R
1

(:7T,Z)]
a a

IL [I-2,,{ 1 r~ . }K2(t,z)=I_" -2- t+z- 2 )0 exp(-s)cosechssmhstcoshszds

~

- L sin m7Tt cos m7Tz{m7Ta cosech2m7Ta - (1- 2,,) (coth m7Ta - I)}
m=l,2

K3(t, z) = -IlL [-21 {_I__ 2 r~ exp(-s) cosech s sinh st cosh sz dS}
-II 7T t-z )0

~

+ L sin m7Tt cos m7TZ (coth m7Ta -1 + m7Ta cosech2m7Ta)
m=1.2

2m7T

~ -2 () ( )]- L a R m7T t R I m7T Z

m=I.2 sinh 2m7T + 2m7T a ' a '
a a

2 ~

_:!!- L m7TaJo(m7Tt) cos m7Tz{m7Ta cosech2m7Ta - (1- 2,,) (coth m7Ta -I)}
a m=I.2

2m7T
2~ - ()()+:!!- a hi m7T t R m7T Z

a m~.2 sinh 2m7T + 2m7T a ' a '
a a

K,(t, z) = -(1- 2,,) t1Z + t ~ Z - 2L~ exp (-s) cosechs sinh st cosh sz dS}

~

+ 27T L sin m7Tt cos m7TZ {m7Ta cosech2m7Ta - (1- 2,,)(coth m7Ta -I)}
m=t.2

2m7T
~ -2 ()()_ 27T a S m7T t R m7T Z

m~.2 sinh 2m7T + 2m7T a' a '
a a

1 r~
K6(t, z) = - t + Z + 2 )0 exp (-s) cosech s sinh st cosh sz ds

~

- 27T L sin m7Tt cos m7TZ (coth m7Ta - 1+ m7Ta cosech2m7Ta)
m=l,2

2m7T
~ -2 ()()+ 27T a R m7T t R m7T Z

m~.2 sinh 2m7T + 2m7T a ' a '
a a

hl('\' t) = (,\ coth'\ -I)1o(At) - At1I(,\t)

R I(A, t) = d~ R('\, t) = (,\ coth -1) cosh At - At sinh At.

627

(57)

(58)

(59)

(60)

(61)

(62)

(63)

(64)
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NUMERICAL SOLUTION OF THE INTEGRAL EQUATIONS

Integral eqns (50), (55) and (56) have to be solved simultaneously for numerical results. But we
note that using (1Z) and (48), the shear stress in the adhesive zone (0 ~ z ~ c) can be written as

But the finiteness of the contact shear stress at z = c implies

(65)

Thus the numerical solution of the system of eqns (50), (55) and (56) must fulfill the condition (65).
The eqn (50) is Fredholm second kind equation, while (55) and (56) are singular integral equations
of the second and first kind, respectively.

For facilitating numerical solution, the intervals (0, c), (c, b) and (b,1) are normalized by
defining

c 'I' t(t) = 8.(u); O<t<ct = (1 +u) 2'

c
O<z<cz=(v+l)2;

b c
'l'2(t) = 82(U}; c<t<bt= (1 +u)z+(1- u)z,

b c
c<z<bz = (1 +v) Z+(1 - v) 2;

t= bu +1- u, 'l'3(t} = 83(u); b<t<:1

z= bv +1- v; b<z<1. (66)

Further, on the basis of our discussion on the singularity of 82 and 83 near z = b, we can write

82(U) =(1- U)"g2(U), -1 < U < 1

83(U)=(1-U)"g3(U), O<u<1

where a ::= {3 -1, and (3 is the real root of eqn (40).
Making use of substitutions (66) and (67), eqns (50), (55) and (56) yield

(67)

8t(v)+L8.(u)N.(u,v)du+L(l-u)"g2(u}N2(u,v}du

+f (1- u)"g3(u)N3(u, v)du = - 3~~p (v + 1), -1 < v < 1 (68)

-(l-v)"g2(V)+i(~;!p~JI (1 U~g2(U)du+JI 8t(U)N4(U,V}du+J
t

(1-u)"g2(u)Ns
7T P -I U V -I -.

x(u, v) du + ( (1- u)"g3(u)N6(U, v}du =-1j.t ; -1 < v < 1 (69)h -P

L8.(u)N7(U,v)du+ L(1-u)"g2(u)Ns(u,v)du

+ f(1-u)"g3(U)N9(U,V)dU=-Z7T; O<v<1 (70)

where

(71)



Indentation of an elastic rectangle

N( )=C(1+v)(b-C)MO(b+C+bU-CU C+CV)
2 U, V 2(3 _ 4II ) 2' 2

N( ) = c(1+v)(1-b)MI (1+bU-U C+CV)
3 U,V 3 - 411 2' 2

N ( ) = £ K (C +cu b +C+bv - CV)
4 U,V 2 I 2' 2

N ( ) = (b - c) K (b +C+bu - cu b +C+bv - CV)
s u,v 2 2 2 ' 2

N6(U, v) = (1- b)K3C+b; - u, b +C \bV - CV)

C (C + cu )N7(U,V)=ZK4 -2-,1+bv-v

N ( ) = (b - c) K (b +c +bu - cu 1+b _ )
8 u,v 2 s 2 ' V V

1
N9(U, v) = --+(1- b)K6(1 +bu - u, 1+bv - v).

u-v

629

(72)

(73)

(74)

(75)

(76)

(77)

(78)

(79)

For numerical solution of (70), we use the technique of extending the definition of 'l'3(U)
appropriately into the interval (-1,0) and using the corresponding Jacobi integration formula.
This method has been used by Gupta and Erdogan [5] in the case of an edge crack where the
singularity is of the square root type. The appropriate extension, in this case, is

'l'2(U) = (1- u2tG(u), G(u) = G(-u); -1 < u < 1

so that
(1 + utG(u) = g3(U); 0< u < 1.

Using (80) we may write

We also note that

(80)

(81)

(82)

(83)

Noting that G(u) is singular at u = ±1, we can now employ the numerical method of solving
singular integral equation by the method of collocation in conjunction with Jacobi integration
formula as given in [11]. Thus (70) can be reduced to a set of n3 algebraic equations in terms of
(nl +n2 +n3) unknowns as given by

"I "2

i~2 A/o.O)81(u.')N7(u.', v/) + i~,2 A/O,a)g2(u/)N8(u/, vl)

",
+i~2 A/a,a)G(u?)N9(u?, v/) = -21T, (j =1,2 ... n3) (84)

where

P:?"O)(U.') = 0, (i = 1, n,)

P~;")(u?)= 0, (i = 1, n2)

P~':;:':I(U?) =0, (i = 1, 2n3 + 1)

(85)

A/a,M are the corresponding weights of Jacobi integration formula[l2].
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A simple procedure for obtaining numerical solution of eqn (69) seems to be lacking and none
of the methods discussed in [11] are readily applicable to it. We, therefore, treat in an
approximate way as described in the sequel. We choose the collocation points to be u/
(j = 1, ... n2). The eqn (69) can now be approximated by

- (1- Uj2)g2(Uj2) +i;~;::~L(1-uUT~;(U)du + i~2 A/o.ol8.(u/)N4(U/' , ul)

+i~2 A/O.a lg2(u?)N5(U?, ud + i~2 A/a,a lG(u?)N6(u?, u/) = 1~ v' (j = 1,2, ... n2)' (86)

The term with the Cauchy kernel presents difficulty, but since the singularity is integrable we may
write

[ (
1 2)a ]

1 a I (1-ut g2(U)- ~ g2(ul) 2

J (1-U)g2(U)d -J 1-u d +(1- ,2)al 11- Uj l (2)
2 U - 2 U UJ og 1+ 2 g2 Uj .

-I U - Uj -1 U - Uj Uj
(87)

By applying Gauss-Jacobi integration and taking limits the above expression on the right side
may be reduced to

(88)

Using (88), a numerical treatment of eqn (86) as a system of algebraic equations is possible in
which a finite difference approximation for g~ may be made.

Finally, we have eqn (68) which poses no problem since it is a Fredholm integral equation of
the second type. For the purpose of numerical solution it may be replaced by

"1 "2

81(u/) + 2: A/O,Ol81(U/)NI(U/, U/) + 2: A/O.alg2(U?)N2(U?, U/)
i=t,2 i=1.2

(89)

Equations (84), (86) and (89) provide a system of (n. +n2 +n) number of algebraic equations
with the same number of unknowns. But the condition (65) is also to be fulfilled which gives

8.(1) = o. (90)

For obtaining numerical results, taking a given set of v, 1-', a and b, iterations were performed for
various values of c until (90) was satisfied.

NUMERICAL RESULTS AND DISCUSSIONS

The present problem is described completely by the following parameters: coefficient of
friction 1-', Poisson's ratio v, aspect ratio a, punch width 2b and indentation 11. As explained
earlier, the extent of adhesion c is obtained as a part of the solution. As in [9], c is independent of
the magnitude of 11. Numerical results for the variation of the ratio cIb with friction coefficient I-'
for various values of a, b and v are presented in Figs. 1-3. It is interesting to note that as c Ib ~ 1,
I-' ~OO. In other words, there is always some slip under the punch for finite coefficient of friction.
This is in agreement with the results in case of the compression of an elastic half-space by a rigid
rough punch[3]. It may be of interest, however, to note that for an elastic block compressed
between rough rigid planes, there may be complete adhesion between the planes and the
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rectangle when the coefficient of friction is greater than certain finite limiting value [9]. Figure 4
presents contact shearing stress for a = 1.0, v = 0.35 and various values of band J.L.

The following expression for contact pressure (Txx(a, z) may be obtained

(Txx~, z) = -1- (1-/V) ['I':(Z) +f Y{;J~;2-_~~Z)} dy] - r'l'1(y)M10(y, z) dy

+(1-2v) (b y'l'2(yL (b'l'2(y)M11(y,z)dY
7T' Jc y2 - Z2 Jc

+l (Y;3(Y~dY+ (b'l'3(y)M12(y,z)dy, O::5Z::5C
7T' Jb y - z J (91)

(92)

where

(1-2v) (~
MIO(y, z) = ---2- Jo s exp (-s) cosech sJo(sy) cosh (sz) ds

7T' ~

-2" m~.2 m7T' cos m7T'zJo(m7T'y)[m7T'a cosech2m7T'a - (1- 2v) (coth m7T'a -1)]

2m7T'

+.! :i 7 d R (m7T' z) h2 (m7T' y)
2 m-l,2 sinh 2m7T' +2m7T'dz a ' a '

a a

(93)

(1-2v)L~M11(y,Z)=--- exp(-s)cosechs sinhsy coshsz ds
7T' 0

~

+ L sin m7T'y cos m7T'z[m7T'a cosech2m7T'a -(1-2v)(coth m7T'a -1)]
m=1.2

m7T'

_1 :i a s(m7T' Y)~R (m7T' z)
a m~I.2 . h2m7T'+2m7T' a' dz a 'sm -- --

a a

(94)
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~

M I2(y, Z) =m~,2 sin m1l'y cos m7TZ (coth m7Ta - 1+ m1l'a cosech2 m1l'a)

2m7T

- i £;""2 R (m7T Y)~R (m7T z)
m-I,2 • h2m1l'+2m7T a' dz a 'sm -- --

a a

11~-- exp (-s) cosech s sinh (sy) cosh (sz) ds,
7T 0

633

(95)

Figure 5 shows the ratio of contact shear and contact normal stresses for a =1.0 and v =0.35 for
various values of b,

As in [4}, the "effective resistance," defined as the ratio of the resultant load P and the
penetration, is of practical interest which may be obtained as

P 4

G~h = a -¥ vf 'I',(t)dt - vf t'l'z(t)dt - f (l-t)'I'3(t)dt'
(96)
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The variation of the "effective resistance" with b and a is depicted in Fig. 6 for IL = 0.1 and
JI =0.1.

Finally, it is of interest to note that in the present case the contact shear stress is outwards,
that is in the same direction as in the case of a punch pressing on an elastic half-space [3]. But for
a compression of an elastic rectangle between rigid planes, b = I, the direction of the contact
shear is inwards[9]. Thus, there is a discontinuous behavior of slip when b ~ 1.
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APPENDIX
In order to reduce (21) to a real form we now consider the contour integration of the function

p coth ap
. 2 2 P(p, I)P(p, z)

sm p+ p

around the contour r consisting of the imaginary axis with indentations around th~ points p = (im1T.! a)
(m = M, -1,0, I, M), the semicircle Ipl = (N +1/2)1T in the right hand half plane and the CIrcles around the pomts
p =An (n =N, -I, I, N) as well as p =m1T (m =1,2 N); where M is the largest integer less than or equal to
(N +1/2)a. Noting that the residues of the function at p =An, p =m1T, p = im1Tla and p =0 are

An coth aAnPtA I)P(A )
4 cos2 An n, n, Z ,

-sin m1TZ sin m1Tt
2m [m1Ta cosech2 m1Ta - (3 - 4v) coth m1Ta],

m1T

(j2 S (m1T, t) S (m1T, z), (1- V)2 tZ,
sinh 2m1T+2m1T a a a

a a

respectively, where

R(A, t) = coth Asinh At - t cosh At

S(A, t) = R(A, 1)+2(1- A) sin~ At

we have from the Residue Theoreum

2 m1T
+00 An coth aAn 00 a2

L 2 2A P(An,I)P(An,z)=- L 2 2n__oo cos n m-'.2 • h m1T+ m1T
n".O SID -a- -a-

S (m1T, t) S (m1T, Z) + ~ sin m1Tt sin m1TAZ
a a m-1.2 m71'

(I-V)2tZ
[am1T cosech2 am1T - (3 - 4v) coth am1T] - --a-'


